Carbonate microbialites and chemotrophic microbes: Insights from caves from south‐east China

Author:

Ren Min1ORCID,Jones Brian2ORCID,Nie Xiaomin1,Lin Xin3,Meng Chuang4

Affiliation:

1. Department of Geological Oceanography, College of Ocean and Earth Sciences Xiamen University Xiamen 361102 China

2. Department of Earth and Atmospheric Sciences University of Alberta Edmonton AB T6G 2E3 Canada

3. State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361102 China

4. The First Affiliated Hospital of Nanchang University Nanchang 330006 China

Abstract

ABSTRACTChemosynthetic microorganisms facilitate microbialite development in many caves throughout the world. In Youqin Cave and Tian'e Cave, located in the Carboniferous–Triassic carbonates on the South China Block, five Quaternary speleothems (stalagmite, stalactite and cave pearl) that are 2.3 to 11.0 cm long were examined for their petrographic, geochemical and microbiological features to reveal how chemotrophs contribute to microbialite growth. In the speleothems, millimetre‐sized stromatolites, thrombolites and calcified microbial mats are characterized by alternating light, calcitic microlaminae and dark, clay and organic‐rich calcite microlaminae. Filamentous (reticulate, smooth, nodular and helical), coccoid and bacilliform microbes, originally carried into the caves from surface soils, are more common in the dark microlaminae/clots than in the light microlaminae. 16S rRNA gene sequencing shows that the biotas in the microbialites are dominated by chemoorganotrophic heterotrophic bacteria, including primarily Sphingomonas, Crossiella and Acinetobacter, and rare Archaea. Diverse metabolic pathways of these prokaryotes, including ureolysis, denitrification and nitrite ammonification, contributed to increases in localized pH and/or dissolved inorganic carbon in these microenvironments, prompting carbonate precipitation. Development of the cave microbialites was probably controlled by the evolution of the cave microbial community as environmental conditions changed. Microbialite growth was probably mediated by the microorganisms that flourished on the speleothem surfaces during periods of low drip water rates and slow calcite precipitation. The change from microstromatolites to microthrombolites was probably linked to a decrease in cell populations in the microbial communities. These cave microbialites provide clear insights regarding the biogenicity and growth mechanisms of chemosynthetic microbialites. Given their association with chemolithotrophic activities that can date back to the Meso‐Archean, cave microbialites provide insights into the biogenicity and growth mechanisms of chemosynthesis‐based microbialites throughout geological history.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3