Using machine learning to increase access to and engagement with trauma‐focused interventions for posttraumatic stress disorder

Author:

Lenton‐Brym Ariella P.1ORCID,Collins Alexis12ORCID,Lane Jeanine2ORCID,Busso Carlos3ORCID,Ouyang Jessica3ORCID,Fitzpatrick Skye14ORCID,Kuo Janice R.15ORCID,Monson Candice M.12ORCID

Affiliation:

1. Nellie Health

2. Toronto Metropolitan University Toronto Ontario Canada

3. University of Texas at Dallas Richardson Texas USA

4. York University Toronto Ontario Canada

5. Palo Alto University Palo Alto California USA

Abstract

AbstractBackgroundPost‐traumatic stress disorder (PTSD) poses a global public health challenge. Evidence‐based psychotherapies (EBPs) for PTSD reduce symptoms and improve functioning (Forbes et al., Guilford Press, 2020, 3). However, a number of barriers to access and engagement with these interventions prevail. As a result, the use of EBPs in community settings remains disappointingly low (Charney et al., Psychological Trauma: Theory, Research, Practice, and Policy, 11, 2019, 793; Richards et al., Community Mental Health Journal, 53, 2017, 215), and not all patients who receive an EBP for PTSD benefit optimally (Asmundson et al., Cognitive Behaviour Therapy, 48, 2019, 1). Advancements in artificial intelligence (AI) have introduced new possibilities for increasinfg access to and quality of mental health interventions.AimsThe present paper reviews key barriers to accessing and engaging in EBPs for PTSD, discusses current applications of AI in PTSD treatment and provides recommendations for future AI integrations aimed at reducing barriers to access and engagement.DiscussionWe propose that AI may be utilized to (1) assess treatment fidelity; (2) elucidate novel predictors of treatment dropout and outcomes; and (3) facilitate patient engagement with the tasks of therapy, including therapy practice. Potential avenues for technological advancements are also considered.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3