TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.)

Author:

Ma Jianhui1,Wang Yudie1,Tang Xiaoxiao1,Zhao Dongyang1,Zhang Daijing1,Li Chunxi1,Li Wei2ORCID,Li Tian3,Jiang Lina1ORCID

Affiliation:

1. College of Life Sciences Henan Normal University Xinxiang Henan China

2. State Key Laboratory of Cotton Biology Institute of Cotton Research of the Chinese Academy of Agricultural Sciences Anyang Henan China

3. Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China

Abstract

AbstractWheat (Triticum aestivum L.) is an important food crop mainly grown in arid and semiarid regions worldwide, whose productivity is severely limited by drought stress. Although various E3 ubiquitin (Ub) ligases regulate drought stress, only a few SINA‐type E3 Ub ligases are known to participate in such responses. Herein, we identified and cloned 15 TaSINAs from wheat. The transcription level of TaSINA2B was highly induced by drought, osmotic and abscisic acid treatments. Two‐type promoters of TaSINA2B were found in 192 wheat accessions; furthermore wheat accessions with promoter TaSINA2BII showed a considerably higher level of drought tolerance and gene expression levels than those characterizing accessions with promoter TaSINA2BI that was mainly caused by a 64 bp insertion in its promoter. Enhanced drought tolerance of TaSINA2B‐overexpressing (OE) transgenic wheat lines was found to be associated with root growth promotion. Further, an interaction between TaSINA2B and TaSINA1D was detected through yeast two‐hybrid and bimolecular fluorescence complementation assays. And TaSINA1D‐OE transgenic wheat lines showed similar drought tolerance and root growth phenotype to those observed when TaSINA2B was overexpressed. Therefore, the variation of TaSINA2B promoter contributed to the drought stress regulation, while TaSINA2B, interacting with TaSINA1D, positively regulated drought tolerance by promoting root growth.

Funder

National Basic Research Program of China

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3