Affiliation:
1. INRIA Le Chesnay France
2. Université Côte d'Azur Nice France
3. NVIDIA Santa Clara USA
4. Runway Oslo Norway
5. University of California San Diego La Jolla USA
Abstract
AbstractWe introduce MesoGAN, a model for generative 3D neural textures. This new graphics primitive represents mesoscale appearance by combining the strengths of generative adversarial networks (StyleGAN) and volumetric neural field rendering. The primitive can be applied to surfaces as a neural reflectance shell; a thin volumetric layer above the surface with appearance parameters defined by a neural network. To construct the neural shell, we first generate a 2D feature texture using StyleGAN with carefully randomized Fourier features to support arbitrarily sized textures without repeating artefacts. We augment the 2D feature texture with a learned height feature, which aids the neural field renderer in producing volumetric parameters from the 2D texture. To facilitate filtering, and to enable end‐to‐end training within memory constraints of current hardware, we utilize a hierarchical texturing approach and train our model on multi‐scale synthetic datasets of 3D mesoscale structures. We propose one possible approach for conditioning MesoGAN on artistic parameters (e.g. fibre length, density of strands, lighting direction) and demonstrate and discuss integration into physically based renderers.
Subject
Computer Graphics and Computer-Aided Design
Reference43 articles.
1. [BGP*21] BaatzH. GranskogJ. PapasM. RousselleF. NovákJ.:Nerf‐tex: Neural reflectance field textures. InEurographics Symposium on Rendering(June2021) The Eurographics Association.
2. Mip‐nerf: A multiscale representation for anti‐aliasing neural radiance fields;Barron J. T.;ICCV,2021
3. [CLC*22] ChanE. R. LinC. Z. ChanM. A. NaganoK. PanB. MelloS. D. GalloO. GuibasL. J. TremblayJ. KhamisS. KarrasT. WetzsteinG.:Efficient geometry‐aware 3d generative adversarial networks. vol. abs/2112.07945. URL:https://arxiv.org/abs/2112.07945.
4. [CMK*14] CimpoiM. MajiS. KokkinosI. MohamedS. VedaldiA.:Describing textures in the wild. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2014).
5. [CMK*20] ChanE. MonteiroM. KellnhoferP. WuJ. WetzsteinG.:pi‐GAN: Periodic implicit generative adversarial networks for 3d‐aware image synthesis.arXiv(2020).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献