MesoGAN: Generative Neural Reflectance Shells

Author:

Diolatzis Stavros123ORCID,Novak Jan3ORCID,Rousselle Fabrice3ORCID,Granskog Jonathan4ORCID,Aittala Miika3ORCID,Ramamoorthi Ravi35ORCID,Drettakis George12ORCID

Affiliation:

1. INRIA Le Chesnay France

2. Université Côte d'Azur Nice France

3. NVIDIA Santa Clara USA

4. Runway Oslo Norway

5. University of California San Diego La Jolla USA

Abstract

AbstractWe introduce MesoGAN, a model for generative 3D neural textures. This new graphics primitive represents mesoscale appearance by combining the strengths of generative adversarial networks (StyleGAN) and volumetric neural field rendering. The primitive can be applied to surfaces as a neural reflectance shell; a thin volumetric layer above the surface with appearance parameters defined by a neural network. To construct the neural shell, we first generate a 2D feature texture using StyleGAN with carefully randomized Fourier features to support arbitrarily sized textures without repeating artefacts. We augment the 2D feature texture with a learned height feature, which aids the neural field renderer in producing volumetric parameters from the 2D texture. To facilitate filtering, and to enable end‐to‐end training within memory constraints of current hardware, we utilize a hierarchical texturing approach and train our model on multi‐scale synthetic datasets of 3D mesoscale structures. We propose one possible approach for conditioning MesoGAN on artistic parameters (e.g. fibre length, density of strands, lighting direction) and demonstrate and discuss integration into physically based renderers.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference43 articles.

1. [BGP*21] BaatzH. GranskogJ. PapasM. RousselleF. NovákJ.:Nerf‐tex: Neural reflectance field textures. InEurographics Symposium on Rendering(June2021) The Eurographics Association.

2. Mip‐nerf: A multiscale representation for anti‐aliasing neural radiance fields;Barron J. T.;ICCV,2021

3. [CLC*22] ChanE. R. LinC. Z. ChanM. A. NaganoK. PanB. MelloS. D. GalloO. GuibasL. J. TremblayJ. KhamisS. KarrasT. WetzsteinG.:Efficient geometry‐aware 3d generative adversarial networks. vol. abs/2112.07945. URL:https://arxiv.org/abs/2112.07945.

4. [CMK*14] CimpoiM. MajiS. KokkinosI. MohamedS. VedaldiA.:Describing textures in the wild. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)(2014).

5. [CMK*20] ChanE. MonteiroM. KellnhoferP. WuJ. WetzsteinG.:pi‐GAN: Periodic implicit generative adversarial networks for 3d‐aware image synthesis.arXiv(2020).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3