Plastid terminal oxidase is required for chloroplast biogenesis in barley

Author:

Overlander‐Chen Megan1,Carlson Craig H.12,Fiedler Jason D.12,Yang Shengming123ORCID

Affiliation:

1. USDA‐ARS Cereals Research Unit Edward T. Schafer Agriculture Research Center Fargo North Dakota 58102 USA

2. Department of Plant Sciences North Dakota State University North Dakota 58102 USA

3. Department of Plant Pathology North Dakota State University North Dakota 58102 USA

Abstract

SUMMARYChloroplast biogenesis is critical for crop biomass and economic yield. However, chloroplast development is a very complicated process coordinated by cross‐communication between the nucleus and plastids, and the underlying mechanisms have not been fully revealed. To explore the regulatory machinery for chloroplast biogenesis, we conducted map‐based cloning of the Grandpa 1 (Gpa1) gene regulating chloroplast development in barley. The spontaneous mutation gpa1.a caused a variegation phenotype of the leaf, dwarfed growth, reduced grain yield, and increased tiller number. Genetic mapping anchored the Gpa1 gene onto 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. One gene (HORVU.MOREX.r3.2HG0213170) in the delimited region encodes a putative plastid terminal oxidase (PTOX) in thylakoid membranes, which is homologous to IMMUTANS (IM) of Arabidopsis. The IM gene is required for chloroplast biogenesis and maintenance of functional thylakoids in Arabidopsis. Using CRISPR technology and gene transformation, we functionally validated that the PTOX‐encoding gene, HORVU.MOREX.r3.2HG0213170, is the causal gene of Gpa1. Gene expression and chemical analysis revealed that the carotenoid biosynthesis pathway is suppressed by the gpa1 mutation, rendering mutants vulnerable to photobleaching. Our results showed that the overtillering associated with the gpa1 mutation was caused by the lower accumulation of carotenoid‐derived strigolactones (SLs) in the mutant. The cloning of Gpa1 not only improves our understanding of the molecular mechanisms underlying chloroplast biosynthesis but also indicates that the PTOX activity is conserved between monocots and dicots for the establishment of the photosynthesis factory.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3