Individualized Causal Discovery with Latent Trajectory Embedded Bayesian Networks

Author:

Zhou Fangting12,He Kejun1ORCID,Ni Yang2ORCID

Affiliation:

1. Institute of Statistics and Big Data, Renmin University of China , Beijing , China

2. Department of Statistics, Texas A&M University , College Station, Texas , USA

Abstract

Abstract Bayesian networks have been widely used to generate causal hypotheses from multivariate data. Despite their popularity, the vast majority of existing causal discovery approaches make the strong assumption of a (partially) homogeneous sampling scheme. However, such assumption can be seriously violated, causing significant biases when the underlying population is inherently heterogeneous. To this end, we propose a novel causal Bayesian network model, termed BN-LTE, that embeds heterogeneous samples onto a low-dimensional manifold and builds Bayesian networks conditional on the embedding. This new framework allows for more precise network inference by improving the estimation resolution from the population level to the observation level. Moreover, while causal Bayesian networks are in general not identifiable with purely observational, cross-sectional data due to Markov equivalence, with the blessing of causal effect heterogeneity, we prove that the proposed BN-LTE is uniquely identifiable under relatively mild assumptions. Through extensive experiments, we demonstrate the superior performance of BN-LTE in causal structure learning as well as inferring observation-specific gene regulatory networks from observational data.

Funder

National Institute of General Medical Sciences

National Natural Science Foundation of China

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3