Latent Trajectory Models for Spatio-Temporal Dynamics in Alaskan Ecosystems

Author:

Lu Xinyi1ORCID,Hooten Mevin B.2ORCID,Raiho Ann M.34,Swanson David K.5,Roland Carl A.67,Stehn Sarah E.67

Affiliation:

1. Department of Statistics, Colorado State University , Fort Collins, Colorado , USA

2. Department of Statistics and Data Sciences, The University of Texas at Austin , Austin, Texas , USA

3. The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center , Greenbelt, Maryland , USA

4. Earth System Science Interdisciplinary Center, University of Maryland , College Park, Maryland , USA

5. National Park Service , Fairbanks, Alaska , USA

6. Denali National Park and Preserve , Denali Park, Alaska , USA

7. Central Alaska Network Inventory and Monitoring Program , Fairbanks, Alaska , USA

Abstract

Abstract The Alaskan landscape has undergone substantial changes in recent decades, most notably the expansion of shrubs and trees across the Arctic. We developed a Bayesian hierarchical model to quantify the impact of climate change on the structural transformation of ecosystems using remotely sensed imagery. We used latent trajectory processes to model dynamic state probabilities that evolve annually, from which we derived transition probabilities between ecotypes. Our latent trajectory model accommodates temporal irregularity in survey intervals and uses spatio-temporally heterogeneous climate drivers to infer rates of land cover transitions. We characterized multi-scale spatial correlation induced by plot and subplot arrangements in our study system. We also developed a Pólya–Gamma sampling strategy to improve computation. Our model facilitates inference on the response of ecosystems to shifts in the climate and can be used to predict future land cover transitions under various climate scenarios.

Funder

National Science Foundation

Division of Environmental Biology

National Park Service

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Reference42 articles.

1. Bayesian analysis of binary and polychotomous response data;Albert;Journal of the American Statistical Association,1993

2. A review of models of landscape change;Baker;Landscape Ecology,1989

3. Notes and observations: aspect transformation in site productivity research;Beers;Journal of Forestry,1966

4. Bayesian spatial binary classification;Berrett;Spatial Statistics,2016

5. Spatio-temporal models for big multinomial data using the conditional multivariate logit-beta distribution;Bradley;Journal of Time Series Analysis,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3