Glucuronidation and its effect on the bioactivity of amentoflavone, a biflavonoid from Ginkgo biloba leaves

Author:

Gan Lili1,Ma Jiating1,You Guoquan1,Mai Jinxia1,Wang Zhaoyu2,Yang Ruopeng1,Xie Cong3,Fei Jingrao1,Tang Lan1ORCID,Zhao Jie1,Cai Zheng1,Ye Ling1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China

2. Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, China

3. Pharmacy Department of Nan Fang Hospital, Southern Medical University, Guangzhou, China

Abstract

Abstract Objectives Ginkgo biloba leaves contain amentoflavone (AMF), a dietary flavonoid that possesses antioxidant and anticancer activity. Flavonoids are extensively subjected to glucuronidation. This study aimed to determine the metabolic profile of AMF and the effect of glucuronidation on AMF bioactivity. Methods A pharmacokinetic study was conducted to determine the plasma concentrations of AMF and its metabolites. The metabolic profile of AMF was elucidated using different species of microsomes. The antioxidant activity of AMF metabolites was determined using DPPH/ABTS radical and nitric oxide assays. The anticancer activity of AMF metabolites was evaluated in U87MG/U251 cells. Key findings Pharmacokinetic studies indicated that the oral bioavailability of AMF was 0.06 ± 0.04%, and the area under the curve of the glucuronidated AMF metabolites (410.938 ± 62.219 ng/ml h) was significantly higher than that of AMF (194.509 ± 16.915 ng/ml h). UGT1A1 and UGT1A3 greatly metabolized AMF. No significant difference was observed in the antioxidant activity between AMF and its metabolites. The anticancer activity of AMF metabolites significantly decreased. Conclusions A low AMF bioavailability was due to extensive glucuronidation, which was mediated by UGT1A1 and UGT1A3. Glucuronidated AMF metabolites had the same antioxidant but had a lower anticancer activity than that of AMF.

Funder

National Natural Science Foundation of China

Program for Pearl River New Stars of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3