Drying and fragmentation drive the dynamics of resources, consumers and ecosystem functions across aquatic‐terrestrial habitats in a river network

Author:

Sarremejane Romain12ORCID,Silverthorn Teresa2,Arbaretaz Angélique1,Truchy Amélie1,Barthélémy Nans13,López‐Rojo Naiara14,Foulquier Arnaud4,Simon Laurent3,Pella Hervé1,Singer Gabriel5,Datry Thibault1

Affiliation:

1. INRAE, Lyon‐Grenoble Auvergne‐Rhône‐Alpes, UR RiverLy Villeurbanne France

2. School of Science and Technology, Nottingham Trent University Nottingham UK

3. Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA Villeurbanne France

4. Universite Grenoble‐Alpes, Universite Savoie Mont Blanc, CNRS, LECA Grenoble France

5. Department of Ecology, University of Innsbruck Innsbruck Austria

Abstract

Rivers form meta‐ecosystems, in which disturbance and connectivity control biodiversity, ecosystem functioning and their interactions across the river network, but also across connected instream and riparian ecosystems. This aquatic–terrestrial linkage is modified by drying, a disturbance that also naturally fragments river networks and thereby modifies organism dispersal and organic matter (OM) transfers across the river network. However, little evidence of the effects of drying on river network‐scale OM cycling exists. Here, we assessed the effects of fragmentation by drying at the river meta‐ecosystem scale by monitoring leaf resource stocks, invertebrate communities and decomposition rates, across three seasons and 20 sites, in the instream and riparian habitats of a river network naturally fragmented by drying. Although instream leaf resource quantity and quality increased, leaf‐shredder invertebrate richness and abundance decreased with flow intermittence. Decomposition was, however, mainly driven by network‐scale fragmentation and connectivity. Shredder richness and invertebrate‐driven decomposition both peaked at sites with intermediate amounts of intermittent reaches upstream, suggesting that upstream drying can promote the biodiversity and functioning of downstream ecosystems. Shredder richness, however, had a negative effect on decomposition in perennial sites, likely due to interspecific competition. Leaf quantity, invertebrate communities and invertebrate‐driven decomposition became more similar between instream and riparian habitats as drying frequency increased, likely due to homogenization of environmental conditions between both habitats as the river dried. Our study demonstrates the paramount effects of drying on the dynamics of resources, communities and ecosystem functioning in rivers and presents evidence of one of the first network‐scale examples of the co‐drivers of ecosystem functions across terrestrial–aquatic boundaries.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3