Physically‐based analytical erosion for fast terrain generation

Author:

Tzathas Petros1ORCID,Gailleton Boris2ORCID,Steer Philippe23ORCID,Cordonnier Guillaume1ORCID

Affiliation:

1. Inria, Université Côte d'Azur France

2. Univ Rennes, CNRS, Géosciences Rennes UMR 6118 France

3. Institut universitaire de France

Abstract

AbstractTerrain generation methods have long been divided between procedural and physically‐based. Procedural methods build upon the fast evaluation of a mathematical function but suffer from a lack of geological consistency, while physically‐based simulation enforces this consistency at the cost of thousands of iterations unraveling the history of the landscape. In particular, the simulation of the competition between tectonic uplift and fluvial erosion expressed by the stream power law raised recent interest in computer graphics as this allows the generation and control of consistent large‐scale mountain ranges, albeit at the cost of a lengthy simulation. In this paper, we explore the analytical solutions of the stream power law and propose a method that is both physically‐based and procedural, allowing fast and consistent large‐scale terrain generation. In our approach, time is no longer the stopping criterion of an iterative process but acts as the parameter of a mathematical function, a slider that controls the aging of the input terrain from a subtle erosion to the complete replacement by a fully formed mountain range. While analytical solutions have been proposed by the geomorphology community for the 1D case, extending them to a 2D heightmap proves challenging. We propose an efficient implementation of the analytical solutions with a multigrid accelerated iterative process and solutions to incorporate landslides and hillslope processes – two erosion factors that complement the stream power law.

Funder

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3