Affiliation:
1. Plant Biology Section, School of Integrative Plant Science Cornell University Ithaca NY USA
2. Department of Cell and Systems Biology University of Toronto Toronto Canada
3. Boyce Thompson Institute Ithaca NY USA
4. Soil and Crop Sciences Section, School of Integrative Plant Science Cornell University Ithaca NY USA
5. Environmental Genomics and Systems Biology Division Lawrence Berkeley National Laboratory Berkeley CA USA
6. Lawrence Berkeley National Laboratory Department of Energy Joint Genome Institute Berkeley CA USA
Abstract
SUMMARYPlant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC‐MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC‐MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ–condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)‐based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML‐based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co‐accumulation analysis further identified condition‐specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio‐Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi‐bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.
Funder
Genome Canada
Joint Genome Institute
National Institute of Food and Agriculture
Natural Sciences and Engineering Research Council of Canada
U.S. Department of Energy
Subject
Cell Biology,Plant Science,Genetics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献