Phylogenomic reconstruction influenced by assembly and annotation parameters: Using whole genome data to unravel the relationships of Spionidae (Annelida)

Author:

Bogantes Viktoria E.12ORCID,Meiβner Karin3,Waits Damien S.1,Kocot Kevin M.4,Halanych Kenneth M.15

Affiliation:

1. Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies Auburn University Auburn Alabama USA

2. Department of Biology University of West Florida Pensacola Florida USA

3. Forschungsinstitut Senckenberg Deutsches Zentrum für Marine Biodiversitätsforschung, Biozentrum Grindel Hamburg Germany

4. Department of Biological Sciences The University of Alabama Tuscaloosa Alabama USA

5. Center for Marine Sciences University of North Carolina Wilmington Wilmington North Carolina USA

Abstract

AbstractMost efforts at improving accuracy in phylogenomic reconstructions have focused on improving tree‐building methods or orthology determination. Even though the use of whole genome sequence or transcriptome data is increasing, the degree to which accurate genome assembly and annotation influence phylogenetic inference has not been well explored. Here, we use low‐coverage whole genome sequencing of spionid annelids to explore the impact of different assemblers and annotation strategies on tree reconstruction. We also produce a phylogenetic hypothesis that spans the breadth of Spionidae, examining the current systematics of the group, which is based on morphological parsimony analyses and classical taxonomy. Our results show that both assembly and annotation can have important consequences for the pool of loci that may be available for tree reconstruction. When an identical phylogenomic pipeline is used, differences in assembly and annotation can account for variation in reconstructed topologies. Interestingly, the completeness and depth of the data used for training annotation software (i.e. data from model systems) appear to be more important, by some measures, than the degree of phylogenetic relatedness of the organism from which training data are drawn. Despite variation in recovered topologies, the recognised subfamily Spioninae is nested within Nerininae, suggesting that diagnostic characters of Nerininae (e.g. thick egg membrane, short‐headed sperm) are symplesiomorphies of Spionidae rather than apomorphies of a particular subclade. With the increased use of genomic data, our results advocate for a broader consideration of how assembly and annotation may impact data matrices used in phylogenomic analyses.

Funder

Division of Environmental Biology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3