Affiliation:
1. Department of Oncological Sciences University of Utah Salt Lake City Utah USA
2. Department of Biomedical Informatics University of Utah Salt Lake City Utah USA
3. Huntsman Cancer Institute University of Utah Health Sciences Center Salt Lake City Utah USA
4. Department of Dermatology University of Utah Health Sciences Center Salt Lake City Utah USA
Abstract
AbstractGene expression profiling technologies have revolutionized cell biology, enabling researchers to identify gene signatures linked to various biological attributes of melanomas, such as pigmentation status, differentiation state, proliferative versus invasive capacity, and disease progression. Although the discovery of gene signatures has significantly enhanced our understanding of melanocytic phenotypes, reconciling the numerous signatures reported across independent studies and different profiling platforms remains a challenge. Current methods for classifying melanocytic gene signatures depend on exact gene overlap and comparison with unstandardized baseline transcriptomes. In this study, we aimed to categorize published gene signatures into clusters based on their similar patterns of expression across clinical cutaneous melanoma specimens. We analyzed nearly 800 melanoma samples from six gene expression repositories and developed a classification framework for gene signatures that is resilient against biases in gene identification across profiling platforms and inconsistencies in baseline standards. Using 39 frequently cited published gene signatures, our analysis revealed seven principal classes of gene signatures that correlate with previously identified phenotypes: Differentiated, Mitotic/MYC, AXL, Amelanotic, Neuro, Hypometabolic, and Invasive. Each class is consistent with the phenotypes that the constituent gene signatures represent, and our classification method does not rely on overlapping genes between signatures. To facilitate broader application, we created WIMMS (what is my melanocytic signature, available at https://wimms.tanlab.org/), a user‐friendly web application. WIMMS allows users to categorize any gene signature, determining its relationship to predominantly cited signatures and its representation within the seven principal classes.