Water temperature and season length interact to explain a rare non‐linear ecogeographic cline in body size

Author:

Barry Savanna Carlyn12ORCID,Smith Matthew Denman3,Heres Berlynna4,Thomas Travis Michael15,Hall‐Scharf Brittany J.26,Brockmann H. Jane3

Affiliation:

1. Nature Coast Biological Station University of Florida Cedar Key Florida USA

2. Florida Sea Grant University of Florida Gainesville Florida USA

3. Department of Biology University of Florida Gainesville Florida USA

4. Crustacean Research Section, Florida Fish and Wildlife Research Institute St. Petersburg Florida USA

5. Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA

6. UF/IFAS Extension Hernando County University of Florida Brooksville Florida USA

Abstract

AbstractAimAdult body size often exhibits patterns across large‐scale environmental gradients, creating ecogeographic clines. However, the form of body size clines varies across taxonomic groups, with linear and non‐linear patterns in body size observed in nature. Non‐linear body size clines have received less study, and questions remain about how environmental gradients interact to produce non‐linear clines. We examined the body size of the American horseshoe crab (Limulus polyphemus), a widely distributed marine arthropod, and evaluated the hypothesis that temperature and active season length can interact multiplicatively to result in a dome‐shaped distribution.LocationFourteen states in the United States of America and three Mexican states, representing the entire geographic range of the species.MethodsWe compiled environmental data and body size measurements from more than 49,000 individual horseshoe crabs. For each location, we extracted from the literature or calculated from raw data the mean male prosoma width and the mean female prosoma width. We applied a general additive modelling (GAM) approach to characterize the body size cline, test a hypothesis regarding temperature and season length, and explore evidence for the influence of additional environmental factors.ResultsModel results indicate temperature and season length could act multiplicatively to produce dome‐shaped clines, and these findings align with and quantify previous anecdotal reports of a strong dome‐shaped body size cline across latitude for horseshoe crabs.Main ConclusionsActive season length appears to become relatively more influential on horseshoe crab body size in the northern part of their range, while temperature effects per se appear to dominate in southern latitudes. For horseshoe crabs, the pattern of size variation is consistent with the predictions of Optimal Resource Allocation models, but more study is needed to elucidate mechanistic underpinnings. Considering climate change projections, results from our study suggest future shifts in horseshoe crab body sizes.

Funder

National Science Foundation

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3