The application of systematic accident analysis tools to investigate food safety incidents

Author:

Oleo Dileyni Díaz De1,Manning Louise2ORCID,McIntyre Lynn3,Randall Nicola4,Nayak Rounaq5ORCID

Affiliation:

1. TADRUS Research Group, Department of Agricultural and Forestry Engineering University of Valladolid Valladolid Spain

2. The Lincoln Institute for Agri‐Food Technology University of Lincoln Lincoln UK

3. Department of Food, Land and Agribusiness Management Harper Adams University Newport UK

4. Department of Agriculture and Environment Harper Adams University Newport UK

5. Department of Life and Environmental Sciences Bournemouth University Poole UK

Abstract

AbstractEffective food safety (FS) management relies on the understanding of the factors that contribute to FS incidents (FSIs) and the means for their mitigation and control. This review aims to explore the application of systematic accident analysis tools to both design FS management systems (FSMSs) as well as to investigate FSI to identify contributive and causative factors associated with FSI and the means for their elimination or control. The study has compared and contrasted the diverse characteristics of linear, epidemiological, and systematic accident analysis tools and hazard analysis critical control point (HACCP) and the types and depth of qualitative and quantitative analysis they promote. Systematic accident analysis tools, such as the Accident Map Model, the Functional Resonance Accident Model, or the Systems Theoretical Accident Model and Processes, are flexible systematic approaches to analyzing FSI within a socio‐technical food system which is complex and continually evolving. They can be applied at organizational, supply chain, or wider food system levels. As with the application of HACCP principles, the process is time‐consuming and requires skilled users to achieve the level of systematic analysis required to ensure effective validation and verification of FSMS and revalidation and reverification following an FSI. Effective revalidation and reverification are essential to prevent recurrent FSI and to inform new practices and processes for emergent FS concerns and the means for their control.

Funder

Ministerio de Educación Superior, Ciencia y Tecnología, República Dominicana

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3