A multi‐satellite framework to rapidly evaluate extreme biosphere cascades: The Western US 2021 drought and heatwave

Author:

Feldman Andrew F.12ORCID,Zhang Zhen3ORCID,Yoshida Yasuko4ORCID,Gentine Pierre5ORCID,Chatterjee Abhishek6ORCID,Entekhabi Dara7ORCID,Joiner Joanna8ORCID,Poulter Benjamin1ORCID

Affiliation:

1. Biospheric Sciences Laboratory NASA Goddard Space Flight Center Greenbelt Maryland USA

2. NASA Postdoctoral Program NASA Goddard Space Flight Center Greenbelt Maryland USA

3. Earth System Science Interdisciplinary Center University of Maryland College Park Maryland USA

4. Science Systems and Applications, Inc. (SSAI) Lanham Maryland USA

5. Department of Earth and Environmental Engineering Columbia University New York New York USA

6. Jet Propulsion Laboratory California Institute of Technology Pasadena California USA

7. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA

8. Atmospheric Chemistry and Dynamics Laboratory NASA Goddard Space Flight Center Greenbelt Maryland USA

Abstract

AbstractThe increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon‐climate feedbacks. Here, we develop a satellite‐based rapid attribution workflow and demonstrate its use at a 1–2‐month latency to attribute drivers of the carbon cycle feedbacks during the 2020–2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil–plant–atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture‐deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.

Funder

Goddard Space Flight Center

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3