Fish condition as an indicator of stock status: Insights from condition index in a food‐limiting environment

Author:

Haberle Ines1ORCID,Bavčević Lav2,Klanjscek Tin1ORCID

Affiliation:

1. Ruđer Bošković Institute Zagreb Croatia

2. Department of Ecology, Agriculture and Aquaculture University of Zadar Zadar Croatia

Abstract

AbstractIndividual performance defines population dynamics. Condition index – a ratio of weight and some function of length – has been louded as an indicator of individual performance and recommended as a tool in fisheries management and conservation. However, insufficient understanding of the correlation between individual‐level processes and population‐level responses hinders its adoption. To this end, we use composite modelling to link individual's condition, expressed through the condition index, to population‐level status. We start by modelling ontogeny of European pilchard (Sardina pilchardus, Clupeidae) as a function of food and constant temperature using Dynamic Energy Budget theory. We then provide a framework to simultaneously track the individual‐ and population‐level statistics by incorporating the dynamic energy budget model into an individual‐based model. Lastly, we explore the effects of fishing pressure on the statistics in two constant and food‐limited environmental carrying capacity scenarios. Results show that, regardless of the species' environmental carrying capacity, individual condition index will increase with fishing mortality, that is, with reduction of stock size. Same patterns are observed for gilthead seabream (Sparus aurata, Sparidae), a significantly different species. Condition index can, therefore, in food‐limited populations, be used to (i) estimate population size relative to carrying capacity and (ii) distinguish overfished from underfished populations. Our findings promote a practical way to operationally incorporate the condition index into fisheries management and marine conservation, thus providing additional use for the commonly collected biometric data. Some real‐world applications, however, may require additional research to account for other variables such as fluctuating environmental conditions and individual variability.

Funder

Hrvatska Zaklada za Znanost

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3