Distinctive root system adaptation of ploidy wheats to water stress: A cue to yield enhancement

Author:

Li Pu‐Fang1ORCID,Ma Bao‐Luo2,Palta Jairo A.34,Wei Xiao‐Fei5,Guo Sha5,Ding Tong‐Tong1,Ma Yong‐Qing1

Affiliation:

1. Institute of Soil and Water Conservation, Northwest A & F University Yangling China

2. Ottawa Research and development Centre (ORDC), Agriculture and Agri‐Food Canada Ottawa Ontario Canada

3. CSIRO Agriculture and Food Private Bag No. 5 Wembley Western Australia Australia

4. The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia LB 5005 Perth Western Australia Australia

5. College of Forestry Northwest A & F University Yangling China

Abstract

AbstractGiven the worldwide effort to improve crop drought resistance, it is crucial to understand the mechanisms of root system adaptation of ploidy wheat to water‐deficient environments. A meta‐analysis was performed to examine the changes in root system mechanisms under drought conditions. Data used in the analysis were drawn from 192 papers, taking into account wheat ploidy levels as well as pot and field studies. The results illustrated that water stress reduced grain yield and aboveground biomass to a greater extent in diploid and tetraploid compared with hexaploid genotypes. In contrast, drought reduced root biomass, root surface area and root volume more in hexaploid than in diploid and tetraploid wheat. Under water‐limited conditions, diploid and tetraploid genotypes exhibited greater root biomass and root length densities in the topsoil. Hexaploid genotypes greatly reduced root biomass and root length density in the topsoil and maintained higher root biomass and root length density in subsoil. These genotypes also showed smaller root diameter and xylem centre vessel diameter under drought conditions. The analysis revealed that grain yield was negatively correlated with topsoil root biomass and root length density, root volume, root diameter and xylem centre vessel, but positively correlated with subsoil root mass, root length density and root vigour. The study demonstrated that domestication and selection pressures of ploidy wheat have altered wheat root system traits while improving grain yield. Greater root mass and root length densities in the subsoil facilitate access to soil moisture from deep layers, contributing to high yields in drought environments.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3