Validation of the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes in chronic myelomonocytic leukaemia: A novel approach for improved risk stratification

Author:

Mosquera Orgueira Adrian1ORCID,Perez Encinas Manuel Mateo1,Diaz Varela Nicolas2,Wang Yu‐Hung3ORCID,Mora Elvira4,Diaz‐Beya Marina5ORCID,Montoro Maria Julia6ORCID,Pomares Marin Helena7,Ramos Ortega Fernando8ORCID,Tormo Mar9,Jerez Andres10ORCID,Nomdedeu Josep11,de Miguel Sanchez Carlos12ORCID,Arenillas Leonor13,Carcel Paula14,Cedena Romero Maria Teresa15ORCID,Xicoy Cirici Blanca16ORCID,Rivero Arango Eugenia17,Del Orbe Barreto Rafael Andrés18,Benlloch Luis19,Lin Chien‐Chin20,Tien Hwei‐Fang20,Pérez Míguez Carlos1,Crucitti Davide1,Díez Campelo María21ORCID,Valcárcel David6

Affiliation:

1. Hematology University Hospital of Santiago de Compostela, IDIS Santiago de Compostela Spain

2. Hospital Central de Asturias Oviedo Spain

3. Department of Internal Medicine National Taiwan University Hospital Taipei Taiwan

4. Hematology Department Hospital Universitario y Politécnico La Fe Valencia Spain

5. Department of Hematology, IDIBAPS Hospital Clinic Barcelona Spain

6. Hematology Department Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron Barcelona Spain

7. Hematology Hospital Duran i Reynals, Institut Català d'Oncologia Barcelona Spain

8. Hematology Hospital Universitario de León León Spain

9. Hematology Hospital Clínico Universitario de Valencia Valencia Spain

10. Hematology Hospital Morales Meseguer, IMIB Murcia Spain

11. Hematology Hospital de la Santa Creu i Sant Pau Barcelona Spain

12. Hematology Hospital Universitario de Álava – Sede Txagorritxu Vitoria‐Gasteiz Spain

13. Laboratoris de Citologia Hematològica i Citogenètica, Servei de Patologia Hospital del Mar, GRETNHE, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) Barcelona Spain

14. Hematology Hospital Público Universitario de la Ribera Valencia Spain

15. Hematology Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria i+12 Madrid Spain

16. HU German Trias i Pujol – Institut Català d' Oncologia, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona Barcelona Spain

17. Hematology University Hospital Arnau de Vilanova Lleida Spain

18. Hematology Hospital Universitario Cruces Servicio de Hematología Barakaldo Spain

19. Grupo Español de Síndromes Mielodisplásicos Valencia Spain

20. Department of Internal Medicine, Department of Laboratory Medicine National Taiwan University Hospital Taipei Taiwan

21. Hematology Institute of Biomedical Research of Salamanca, University Hospital of Salamanca Salamanca Spain

Abstract

SummaryChronic myelomonocytic leukaemia (CMML) is a rare haematological disorder characterized by monocytosis and dysplastic changes in myeloid cell lineages. Accurate risk stratification is essential for guiding treatment decisions and assessing prognosis. This study aimed to validate the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes (AIPSS‐MDS) in CMML and to assess its performance compared with traditional scores using data from a Spanish registry (n = 1343) and a Taiwanese hospital (n = 75). In the Spanish cohort, the AIPSS‐MDS accurately predicted overall survival (OS) and leukaemia‐free survival (LFS), outperforming the Revised‐IPSS score. Similarly, in the Taiwanese cohort, the AIPSS‐MDS demonstrated accurate predictions for OS and LFS, showing superiority over the IPSS score and performing better than the CPSS and molecular CPSS scores in differentiating patient outcomes. The consistent performance of the AIPSS‐MDS across both cohorts highlights its generalizability. Its adoption as a valuable tool for personalized treatment decision‐making in CMML enables clinicians to identify high‐risk patients who may benefit from different therapeutic interventions. Future studies should explore the integration of genetic information into the AIPSS‐MDS to further refine risk stratification in CMML and improve patient outcomes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3