Synergistic action of Pseudomonas fluorescens with melatonin attenuates salt toxicity in mustard by regulating antioxidant system and flavonoid profile

Author:

Khan Varisha1,Umar Shahid1,Iqbal Noushina1ORCID

Affiliation:

1. Department of Botany School of chemical and life sciences, Jamia Hamdard New Delhi India

Abstract

AbstractSalt stress is an alarming abiotic stress that reduces mustard growth and yield. To attenuate salt toxicity effects, plant growth‐promoting rhizobacteria (PGPR) offers a sustainable approach. Among the various PGPR, Pseudomonas fluorescens (P. fluorescens NAIMCC‐B‐00340) was chosen for its salt tolerance (at 100 mM NaCl) and for exhibiting various growth‐promoting activities. Notably, P. fluorescens can produce auxin, which plays a role in melatonin (MT) synthesis. Melatonin is a pleiotropic molecule that acts as an antioxidant to scavenge reactive oxygen species (ROS), resulting in stress reduction. Owing to the individual role of PGPR and MT in salt tolerance, and their casual nexus, their domino effect was investigated in Indian mustard under salt stress. The synergistic action of P. fluorescens and MT under salt stress conditions was found to enhance the activity of antioxidative enzymes and proline content as well as  promote the production of secondary metabolites. This led to reduced oxidative stress following effective ROS scavenging, maintained photosynthesis, and improved growth. In mustard plants treated with MT and P. fluorescens under salt stress, eight flavonoids showed significant increase. Kaempferol and cyanidin showed the highest concentrations and are reported to act as antioxidants with protective functions under stress. Thus, we can anticipate that strategies involved in their enhancement could provide a better adaptive solution to salt toxicity in mustard plants.In conclusion, the combination of P. fluorescens and MT affected antioxidant metabolism and flavonoid profile that could be used to mitigate salt‐induced stress and bolster plant resilience.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3