Mechanism of action and side effects of colchicine based on biomechanical properties of cells

Author:

Liu Lanjiao1ORCID,Chen Mingxin1,Gao Yifan1,Tian Liguo1,Zhang Wenxiao1,Wang Zuobin12ORCID

Affiliation:

1. Ministry of Education Key Laboratory for Cross‐Scale Micro and Nano Manufacturing Changchun University of Science and Technology Changchun China

2. Institute for Research in Applicable Computing University of Bedfordshire Luton UK

Abstract

AbstractMany diseases are related to changes in the biomechanical properties of cells; their study can provide a theoretical basis for drug screening and can explain the internal working of living cells. In this study, the biomechanical properties of nephrocytes (VERO cells), hepatocytes (HL‐7702 cells), and hepatoma cells (SMCC‐7721 cells) in culture were detected by atomic force microscopy (AFM) to analyse the side effects of colchicine at different concentrations (0.1 μg/mL (A) and 0.2 μg/mL (B)) at the nanoscale for 2, 4 and 6 h. Compared with the corresponding control cells, the damage to the treated cells increased in a dose‐dependent manner. Among normal cells, the injury of nephrocytes (VERO cells) was markedly worse than that of hepatocytes (HL‐7702 cells) in both colchicine solutions A and B. Based on the analyses of biomechanical properties, the colchicine solution reduced the rate of division and inhibited metastasis of SMCC‐7721 cells. By comparing these two concentrations, we found that the anticancer effect of colchicine solution A was greater than that of solution B. Studying the mechanical properties of biological cells can help understand the mechanism of drug action at the molecular level and provide a theoretical basis for preventing the emergence and diagnosis of diseases at the nanoscale.

Funder

Natural Science Foundation of Jilin Province

Publisher

Wiley

Subject

Histology,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3