Prediction From Minimal Experience: How People Predict the Duration of an Ongoing Epidemic

Author:

Lu Yi‐Long1ORCID,Lu Yang‐Fan23ORCID,Han Zhuo Rachel4,Qin Shaozheng56,Zhang Xin1,Yi Li17,Zhang Hang1367ORCID

Affiliation:

1. School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health Peking University

2. Academy for Advanced Interdisciplinary Studies Peking University

3. Peking‐Tsinghua Center for Life Sciences Peking University

4. Faculty of Psychology Beijing Normal University

5. State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University

6. Chinese Institute for Brain Research, Beijing

7. PKU‐IDG/McGovern Institute for Brain Research Peking University

Abstract

AbstractPeople are known for good predictions in domains they have rich experience with, such as everyday statistics and intuitive physics. But how well can they predict for problems they lack experience with, such as the duration of an ongoing epidemic caused by a new virus? Amid the first wave of COVID‐19 in China, we conducted an online diary study, asking each of over 400 participants to predict the remaining duration of the epidemic, once per day for 14 days. Participants’ predictions reflected a reasonable use of publicly available information but were meanwhile biased, subject to the influence of negative affect and future time perspectives. Computational modeling revealed that participants neither relied on prior distributions of epidemic durations as in inferring everyday statistics, nor on mechanistic simulations of epidemic dynamics as in computing intuitive physics. Instead, with minimal experience, participants’ predictions were best explained by similarity‐based generalization of the temporal pattern of epidemic statistics. In two control experiments, we further confirmed that such cognitive algorithm is not specific to the epidemic scenario and that minimal and rich experience do lead to different prediction behaviors for the same observations. We conclude that people generalize patterns in recent history to predict the future under minimal experience.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Artificial Intelligence,Cognitive Neuroscience,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3