Affiliation:
1. College of Geography and Environmental Science Northwest Normal University Lanzhou China
2. College of Geography and Environmental Science Northwest Normal University, Research Center of Wetland Resources Protection and Industrial Development Engineering of Gansu Province Lanzhou China
Abstract
AbstractMountainous peatlands are one of the most important terrestrial ecosystems for carbon storage and play an important role in the global carbon cycle. An insight into the carbon cycle of peat swamps located in mountainous regions can be obtained by studying the distribution of soil organic carbon (SOC) and its relationships with environmental factors. This study focused on the development conditions of peat swamps in the Gahai wetlands, located on the Zoigê Plateau, China, with four different altitudinal gradients as experimental sample sites. The distribution of SOC and its relationship with environmental factors were analysed through vegetation surveys and a generalized additive model (GAM). The results show that with increasing altitude, soil temperature decreased while the soil pH and bulk density initially decreased then increased. On the contrary, the topographic wetness index (TWI), SOC content, above‐ground biomass and litter count initially increased then decreased. The SOC content of the 0–30 cm soil layer was in the range 226–330 g·kg−1 (coefficient of variation (CV) = 21.4%), and the 30–60 cm layer was 178–257 g·kg−1 (CV = 17.5%) and was significantly correlated (p < .05) with above‐ground biomass and litter count. Meanwhile, the SOC content in the 60–90 cm soil layer was in the range 132–167 g·kg−1 (CV = 9.2%) with a significant correlation (p < .05) with soil temperature, pH, bulk density and topographic moisture index. The study showed that the SOC content exhibited more pronounced spatial patterns with increasing altitude, with the peak value in the shallow soil layer appearing in lower elevation areas compared with the deep soil layer. The level of variation changed from medium to low, reflecting the stable mechanism for maintaining SOC within the heterogeneous peat swamp environment.
Funder
National Natural Science Foundation of China
Subject
Pollution,Soil Science,Agronomy and Crop Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献