Modelling the effectiveness of land‐based natural flood management in a large, permeable catchment

Author:

Collins Sarah L.1ORCID,Verhoef Anne2ORCID,Mansour Majdi3ORCID,Jackson Christopher R.3ORCID,Short Chris4ORCID,Macdonald David M. J.5ORCID

Affiliation:

1. British Geological Survey, Lyell Centre Edinburgh UK

2. Department of Geography and Environmental Science University of Reading Reading UK

3. British Geological Survey, Environmental Science Centre Keyworth UK

4. Countryside and Community Research Institute, University of Gloucestershire Cheltenham UK

5. British Geological Survey Wallingford UK

Abstract

AbstractIn the United Kingdom, woodland planting and soil and crop management are being promoted as approaches to tackling flooding. Although evidence is limited, it is thought tree planting and regenerative agriculture practices such as crop–herbal ley pasture rotations increase infiltration, soil water storage and evapotranspiration, potentially reducing flooding. A process‐based soil–water–vegetation model was coupled with a semi‐distributed groundwater model to explore the impact of these interventions on peak and low flows in a large, groundwater‐dominated catchment. Land use change and management were found to have limited potential to reduce flooding in this setting. Herbal ley–crop rotations produced a <1% reduction in flow for return periods >2 years, and levels of woodland planting judged to be the realistic maximum produced reductions of 0.2%–2.6%, depending on tree species. Broadscale spruce planting was the only scenario to produce significant reductions in peak flow (16.0%–24.7% at return periods 1–15 years); however, the level of spruce planting required to achieve these reductions was estimated to reduce Q95 flow by ~39%, which would likely have negative implications for water security and ecological river flows. The impact of land‐based natural flood management interventions for flood prevention in large, permeable catchments should not be overstated.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

Water Science and Technology,Safety, Risk, Reliability and Quality,Geography, Planning and Development,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3