Affiliation:
1. College of Civil Engineering Hunan University Changsha China
2. Bartlett School of Sustainable Construction University College London London UK
3. Faculty of Architecture The University of Hong Kong Hong Kong China
Abstract
AbstractHigh‐resolution (HR) crack images provide detailed structural assessments crucial for maintenance planning. However, the discrete nature of feature extraction in mainstream deep learning algorithms and computational limitations hinder refined segmentation. This study introduces a rendering‐based lightweight crack segmentation network (RLCSN) designed to efficiently predict refined masks for HR crack images. The RLCSN combines a deep semantic feature extraction architecture—merging Transformer with a super‐resolution boundary‐guided branch—to reduce environmental noise and preserve crack edge details. It also incorporates customized point‐wise refined rendering for training and inference, focusing computational resources on critical areas, and an efficient sparse training method to ensure efficient inference on commercial mobile computing platforms. Each RLCSN's components are validated through ablation studies and field tests, demonstrating its capability to enable unmanned aerial vehicle‐based inspections to detect cracks as narrow as 0.15 mm from a distance of 3 m, thereby enhancing inspection safety and efficiency.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Hunan Provincial Innovation Foundation for Postgraduate
China Scholarship Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献