A rendering‐based lightweight network for segmentation of high‐resolution crack images

Author:

Chu Honghu12,Yu Diran2,Chen Weiwei2,Ma Jun3,Deng Lu1

Affiliation:

1. College of Civil Engineering Hunan University Changsha China

2. Bartlett School of Sustainable Construction University College London London UK

3. Faculty of Architecture The University of Hong Kong Hong Kong China

Abstract

AbstractHigh‐resolution (HR) crack images provide detailed structural assessments crucial for maintenance planning. However, the discrete nature of feature extraction in mainstream deep learning algorithms and computational limitations hinder refined segmentation. This study introduces a rendering‐based lightweight crack segmentation network (RLCSN) designed to efficiently predict refined masks for HR crack images. The RLCSN combines a deep semantic feature extraction architecture—merging Transformer with a super‐resolution boundary‐guided branch—to reduce environmental noise and preserve crack edge details. It also incorporates customized point‐wise refined rendering for training and inference, focusing computational resources on critical areas, and an efficient sparse training method to ensure efficient inference on commercial mobile computing platforms. Each RLCSN's components are validated through ablation studies and field tests, demonstrating its capability to enable unmanned aerial vehicle‐based inspections to detect cracks as narrow as 0.15 mm from a distance of 3 m, thereby enhancing inspection safety and efficiency.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Hunan Provincial Innovation Foundation for Postgraduate

China Scholarship Council

Publisher

Wiley

Reference79 articles.

1. A state‐of‐the‐art review of bridge inspection planning: Current situation and future needs;Abdallah A. M.;Journal of Bridge Engineering,2022

2. A dynamic ensemble learning algorithm for neural networks;Alam K. M. R.;Neural Computing and Applications,2020

3. Robust pixel‐level crack detection using deep fully convolutional neural networks;Alipour M.;Journal of Computing in Civil Engineering,2019

4. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions;Alzubaidi L.;Journal of Big Data,2021

5. SegNet: A deep convolutional encoder‐decoder architecture for image segmentation;Badrinarayanan V.;IEEE Transactions on Pattern Analysis and Machine Intelligence,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3