A comprehensive study of dielectric, modulus, impedance, and conductivity of SrCeO3 synthesized by the combustion method

Author:

Verma Harish1,Tripathi Arpita1,Upadhyay Shail1ORCID

Affiliation:

1. Department of Physics Indian Institute of Technology (BHU) Varanasi Uttar Pradesh India

Abstract

AbstractIn this work, perovskite oxide SrCeO3 was synthesized using the solution combustion method (SCM). Synthesized samples have been characterized using X‐ray diffraction (XRD), Raman, ultra violet (UV)–visible spectroscopy, and scanning electron microscopy (SEM) techniques. The XRD and Rietveld refinement has confirmed the orthorhombic structure with space group Pnma. The average grain size of this ceramic sample is 1.2 µm. The dielectric constant, dissipation factor, modulus, impedance, and alternating current (AC) and direct current (DC) conductivities were analyzed in the temperature range RT to 600°C and frequency range 20 Hz–2 MHz. Further, it was observed that the role of grain boundaries in dielectric and electrical properties is significant, at low temperatures. The origin of the dielectric relaxation and conduction process is the same. The activation energy for DC conduction (Edc) was found to be .79 eV. Electrical conduction/relaxation is assigned to the diffusion of doubly ionized oxygen (Vo··). The value of DC conductivity (1.2 × 10−3−1 cm−1 at 600°C) and activation energy of .79 eV is very close to the values reported for doped CeO2‐based oxide ion conductors for SOFCs. This study has demonstrated that SrCeO3 can be an alternative candidate for the oxide ion conductor electrolyte application and the potential to be used as a thermally stable capacitor application for microwave dielectric applications.

Funder

Aeronautics Research and Development Board

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3