Abstract
The global textile industry is significant and presents great business potential, particularly for emerging nations. On the other hand, because of their erratic and quick expansion, these industrial clusters are to blame for the adverse environmental impacts. Different chemicals, salts, and dyes are all mixed together in wastewater resulting from the textile printing business. This causes it to be brightly colored, have an alkaline pH, and have substantially lower levels of dissolved oxygen, all of which have an impact on the surrounding environment. The study collects wastewater from the textile industry at each stage of the process and analyses it to identify its parameters. These parameters include pH (Analytical value is 6.6 to 13.1), BOD (Analytical Value is 432 to 1840mg/l), COD (Analytical Value is 635 to 4459 mg/l), Total Dissolved Solids – TDS (Analytical Value is 6530 to 21989 mg/l ), TSS (Analytical Value is 275 to 1189), and Ammonium Nitrogen (Analytical Value is 34.2 to 49.4 ), Since these are all baseline variables, the natural ecological system is deteriorating. This allows for the deduction of the state authorities’ final alleviation standards for the ensuing treatment process.
Publisher
Journal of Pure and Applied Microbiology
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Reference34 articles.
1. 1. Stark BL. Long-term economic change: Craft extensification in the Mesoamerican cotton textile industry. J Anthropol. Archaeol. 2020;59:101194. doi: 10.1016/j.jaa.2020.101194
2. 2. Kumar D, Patel Z, Pandit P, et al. Textile Industry Wastewaters From Jetpur, Gujarat, India, Are Dominated by Shewanellaceae, Bacteroidaceae, and Pseudomonadaceae Harboring Genes Encoding Catalytic Enzymes for Textile Dye Degradation. Front Environ Sci. 2021;9:1-15. doi: 10.3389/fenvs.2021.720707
3. 3. Ozdemir O, Armagan B, Turan M, Celik MS. Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dye Pigment. 2004;62(1):49-60. doi: 10.1016/j.dyepig.2003.11.007
4. 4. Maqbool Z, Hussainn S, Ahmad T, et al. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environ Sci Pollut Res. 2016;23(11):11224-11239. doi: 10.1007/s11356-016-6275-3
5. 5. Ajao A, Adebayo GB, Yakubu SE. Bioremediation of textile industrial effluent using mixed culture of Pseudomonas aeruginosa and Bacillus subtilis immobilized on agar-agar in a bioreactor. J Microbiol Biotechnol Res Sch Res Libr J Microbiol Biotech Res. 2011;1:50-56.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献