Encrustation of the ureteral double-J Stents made of styrene/ethylene/butylene and polyurethane before and after implantation

Author:

Haliński Adam,Pasik Kamila,Haliński Andrzej,Haliński Paweł,Trinchieri Alberto,Buchholz Noor,Arkusz Katarzyna

Abstract

Purpose: The aim of this study was to determine the affinity to crystal, calculi and biofilm deposition on ureteral double-J stents (DJ stents) after ureterorenoscopic–lithotripsy procedure (URS-L). The analysis was performed in two aspects: to determine which material used for fabricating ureteral stents promotes encrustation and which part of the DJ stents is the most vulnerable for blockage. Methods: One hundred and twenty patients with an indwelling DJ stent duration between 7 and 78 days were included in this study. The encrustation of DJ stents was characterized by scanning electron microscopy (SEM), and the mechanical properties of DJ stents were examined using the standard MTS Micro Bionix tensile test. Results: This study showed that polyurethane catheters have a much higher affinity for encrustation than styrene/ethylene/butylene block copolymer. Obtained results indicated the proximal (renal pelvis) and distal (urinary bladder) part is the most susceptible to post-URS-L fragments and urea salt deposition. Both the DJ ureteral stents’ outer and inner surfaces were completely covered even after 7 days of implantation. Conclusions: Performed analysis pointed out that polyurethane DJ stents have a much higher affinity for encrustation of calculi and NaCl crystals compared to the silicone-based copolymer. The surface of the ureteral stents needs improvement to minimize salt and kidney stone deposition, causing pre-biofilm formation and the occurrence of defects and cracks.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3