Characterizing the binding of nucleotide ATP on serum albumin by 31P NMR diffusion

Author:

Song Zhiyan1,Zhao Hua1,Olubajo Olarongbe1,Hall Lewis B.1,Orr Chauncey N.1,Askew Courtney B.1

Affiliation:

1. Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA.

Abstract

The pulsed-field-gradient (PFG) 31P NMR diffusion spectra were measured under varied sample conditions to characterize the low-affinity binding of adenosine 5′-triphosphate (ATP) on human serum albumin (HSA) or bovine serum albumin (BSA). The NMR diffusion constants of ATP, ATP–HSA, or ATP–BSA were illustrated as function of ATP concentrations. The binding curves of ATP–HSA and ATP–BSA were identical but strikingly different from the ATP curve. Using a “Scatchard plot”, the apparent binding constant (K) and number of ATP binding sites (n) on serum albumin were evaluated as K = 75.25 (mol/L)–1 and n = 10, respectively. At a pH < 5.0 and a pH > 9.0 or a temperature > 45 °C, the diffusion data of ATP–HSA were found to increase remarkably, suggesting that the dissociation of ATP from HSA was largely enhanced, probably because of pH- or heat-induced protein structural change, degradation, or aggregation. In addition, our data indicated that ADP was strongly competitive with ATP for the low-affinity binding to HSA, but heptanone and Cl were essentially noncompetitive. These results are important for further elucidating the interaction of ATP with serum albumin and its possible effect on related bioprocesses. The method can be well applied to study the binding of other nucleotides/nucleosides on proteins.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3