Analysis of surface erosion of cohesionless soils using a three-dimensional coupled computational fluid dynamics – discrete element method (CFD–DEM) model

Author:

Guo Yuan11,Yu Xiong (Bill)11

Affiliation:

1. Department of Civil Engineering, Case Western Reserve University, 2104 Adelbert Road, Bingham 269, Cleveland, OH 44106-720, USA.

Abstract

A fluid–solid interaction model has been implemented by coupling two numerical methods — computational fluid dynamics (CFD) and discrete element method (DEM) — that capture the mesoscale behaviors of the fluid–solid system. The model is first validated by comparing the results of simulations with two types of experiments: free settling of a single sphere in water and formation of angle of repose of particles under water, which show its capability in modeling the behaviors of both particle phase and fluid phase. The verified model is then used to study factors affecting the soil erodibility, where case studies are designed for soil particles deposited inside a pipe and subsequently subjected to water flow–induced surface erosion. Influencing factors for soil erodibility, including particle diameter and interparticle bond, are analyzed. For cohesionless soils without bond strength, the critical shear stress is found to be linearly related to particle size; while for soils with bond strength, simulation results show that interparticle bonding largely decelerates the erosion process and causes a much lower erosion rate. To further the understanding of soil surface erosion under turbulent flow, the “k–ε” turbulence model has been successfully implemented for the fluid phase. Comparison between the laminar model and the turbulence model shows turbulence significantly accelerates the erosion process.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3