Transient hypoxia in water irradiated by swift carbon ions at ultra-high dose rates: implication for FLASH carbon-ion therapy

Author:

Zakaria Abdullah Muhammad1,Colangelo Nicholas W.2,Meesungnoen Jintana1,Jay-Gerin Jean-Paul1

Affiliation:

1. Département de médecine nucléaire et de radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada.

2. Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, USA.

Abstract

Large doses of ionizing radiation delivered to tumors at ultra-high dose rates (i.e., in a few milliseconds) paradoxically spare the surrounding healthy tissue while preserving anti-tumor activity (compared with conventional radiotherapy delivered at much lower dose rates). This new modality is known as “FLASH radiotherapy” (FLASH-RT). Although the molecular mechanisms underlying FLASH-RT are not yet fully understood, it has been suggested that radiation delivered at high dose rates spares normal tissue via oxygen depletion followed by subsequent radioresistance of the irradiated tissue. To date, FLASH-RT has been studied using electrons, photons, and protons in various basic biological experiments, pre-clinical studies, and recently in a human patient. However, the efficacy of heavy ions, such as energetic carbon ions, under FLASH-RT conditions remains unclear. Given that living cells and tissues consist mainly of water, we set out to study, from a pure radiation chemistry perspective, the effects of ultra-high dose rates on the transient yields and concentrations of radiolytic species formed in water irradiated by 300-MeV per nucleon carbon ions (LET ∼ 11.6 keV/µm). This mimics irradiation in the “plateau” region of the depth–dose distribution of ions, i.e., in the “normal” tissue region in which the LET is rather low. We used Monte Carlo simulations of multiple, simultaneously interacting radiation tracks together with an “instantaneous pulse” irradiation model. Our calculations show a pronounced oxygen depletion around 0.2 μs, strongly suggesting, as with electrons, photons, and protons, that irradiation with energetic carbon ions at ultra-high dose rates is suitable for FLASH-RT.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3