Mechanistic insights into the spontaneous reaction between CO2 and La2–xSrxCuO4

Author:

Whittingham Alexander W.H.1,Lau Jordan1,Smith Rodney D.L.12

Affiliation:

1. Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada.

2. Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada N2L 3G1.

Abstract

Layered perovskites such as La2–xSrxCuO4 are active electrocatalysts for CO2 reduction, but they suffer from structural instability under catalytic conditions. This structural instability is found to arise from the reaction of CO2 with surface sites. Variable scan rate voltammetry shows the growth of a Cu-based redox couple when potentials cathodic of 0.6 V vs. RHE are applied in the presence of CO2. Electrochemical impedance spectroscopy identifies a redox active surface state at this voltage, whose concentration is increased by electrochemical reduction in the presence of CO2. In situ spectroelectrochemical FTIR identifies surface bound carbonates as being involved in the formation of these surface sites. The orthorhombic lattice for La2CuO4 is found to uniquely enable binding bidentate binding of carbonate ions to the surface through reaction with CO2. The incorporation of Sr(II) induces a transition to a tetragonal lattice, for which only monodentate carbonate ions are observed. It is proposed that the binding of carbonate ions in a bidentate fashion generates sufficient strain at the surface to result in amorphization at the surface, yielding the observed Cu(II)/Cu(I) redox couple.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3