Structural and Metabolic Interrelationships Among Glycerophosphatides of Rat Liver In Vivo

Author:

Holub B. J.,Kuksis A.

Abstract

The specific activities of individual molecular species of rat liver diacylglycerylphosphorocholine (PC), diacylglycerylphosphoroethanolamine (PE), and diacylglycerophosphorylinositol (MPI) were determined and compared following intravenous injection of glycerol-14C. PC, PE, and MPI contained 41, 51, and 83%, respectively, tetraenoic species, and 40,17, and 9% combined mono-, di-, and trienoic species. The rest of the phosphatide mass of PC, PE, and MPI was contributed by 18, 32, and 8% penta- and hexaenoic species, respectively. The proportions of chemical classes of the glycerophosphatides differed by 1.1- to 18-fold while the fatty acid associations within the unsaturation classes common to these phosphatides varied 2.2- to 17-fold. After 5 min exposure to radioactive glycerol, the mono-, di-, and trienoic species of the PC, PE, and MPI possessed 13–18, 15–50, and 6–42 times, respectively, the specific activity of the tetraenes of the corresponding phosphatide classes. While the pentaenoic and hexaenoic species of PC and MPI had specific activities three to five times those of the respective tetraenes, the higher polyenes of PE were considerably more radioactive and approached the specific activity of the dienoic species of this phosphatide. With progressing time up to 60 min, the tetraenoic species of PC, PE, and MPI showed increases in relative specific activity of 50, 64, and 109%, respectively, in the three phosphatides. These results are consistent with an effective de novo synthesis of the oligoenoic species and a transacylation of the tetraenoic species of all liver glycerophosphatides tested. The proportional contribution of de novo synthesis in comparison to acyl transfer is apparently greater to the formation of PC and PE than to that of MPI.

Publisher

Canadian Science Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3