Structure and function of secretory glochids and nectar composition in two Opuntioideae (Cactaceae) species

Author:

Silva Stefany Cristina de Melo1,Machado Silvia Rodrigues1,Nepi Massimo2,Rodrigues Tatiane Maria1

Affiliation:

1. UNESP – São Paulo State University, Institute of Biosciences, Department of Botany, 18618-970, Botucatu city, São Paulo State, Brazil.

2. University of Siena, Department of Life Sciences, 53100, Siena, Italy.

Abstract

Cactaceae exhibit highly modified spines that are considered to be extrafloral nectaries (EFNs). Despite their ecological and taxonomical relevance in this family, little is known on their structure and function. We have described the anatomy, ontogenesis, and ultrastructure of the secretory glochids in two Opuntioideae species. Young cladodes of Brasiliopuntia brasiliensis (Willd.) A. Berger and Nopalea cochenillifera (L.) Salm-Dyck were processed for light and electron microscopy studies. The composition of the secretions was analyzed by high performance liquid chromatography. The secretory glochids were soft, massive, and barbed, as well as translucent. Hyaline droplets on the secretory glochid apex were collected by aggressive ants. The secretory glochids originated from the areolar meristem, beginning as small protuberances formed by protoderm and ground meristem. Mature secretory glochids consisted of a central multiseriate axis of ground cells covered by uniseriate epidermis with a continuous cuticle, and exhibited three regions: (i) dilated vascularized base with parenchyma cells exhibiting features associated to nectar secretion; (ii) elongated median region with juxtaposed fusiform non-lignified parenchyma cells; and (iii) tapered apical portion with immature fibers loosely arranged cells. The exudate was sucrose-dominant with a similar amino acid profile in both species. Our results shed light on the secretory activity of glochids in Cactaceae and their role in cactus–ant interactions.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3