Landscape, colonization, and life history: their effects on genetic diversity in four sympatric species inhabiting a dendritic system

Author:

Ruzzante Daniel E.1,McCracken Gregory R.1,Salisbury Sarah J.1,Brewis Hilary T.1,Keefe Donald2,Gaggiotti Oscar E.3,Perry Robert2

Affiliation:

1. Dept. of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada.

2. Newfoundland and Labrador Department of Fisheries and Land Resources, 117 Riverside Drive, Corner Brook, NL A2H 7S1, Canada.

3. Scottish Oceans Institute, East Sands, Univ. of St Andrews, St Andrews, Fife, KY16 8LB, UK.

Abstract

To what degree are patterns of genetic structure in fragmented systems the result of contemporary landscape versus history? We examined the distribution of genetic diversity as a function of colonization history and contemporary landscape in four fish species inhabiting a hierarchically fragmented, unaltered system, the Kogaluk drainage (Labrador): lake trout (Salvelinus namaycush), longnose sucker (Catostomus catostomus), round whitefish (Prosopium cylindraceum), and lake chub (Couesius plumbeus). The footprint of colonization history was still observable in the three species where this issue was examined regardless of the generations since their arrival. Approximate Bayesian computation (ABC) analyses suggest colonization took place from the southwest. The species exhibit similar diversity patterns despite different [Formula: see text] values and generation intervals. Contemporary gene flow was largely negligible except for gene flow from a centrally located lake. These results suggest landscape has driven colonization history, which still has influence on genetic structuring. The species are widespread. Understanding how they behave in the pristine Kogaluk provides a baseline against which to evaluate how other anthropogenically perturbed systems are performing. Improved understanding of historical and contemporary processes is required to fully explain diversity patterns in complex metapopulations.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3