Scalable population estimates using spatial-stream-network (SSN) models, fish density surveys, and national geospatial database frameworks for streams

Author:

Isaak Daniel J.1,Ver Hoef Jay M.2,Peterson Erin E.3,Horan Dona L.1,Nagel David E.1

Affiliation:

1. US Forest Service Rocky Mountain Research Station, Boise, ID 83702, USA.

2. Marine Mammal Laboratory, NOAA–NMFS Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA.

3. ARC Centre of Excellence for Mathematical and Statistical Frontiers and the Institute for Future Environments, Queensland University of Technology (QUT), QLD, Australia.

Abstract

Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100s–10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples, and national geospatial database frameworks for streams provide the components to create a broadly scalable approach to population estimation. We demonstrate such an approach with density surveys for trout species from 108 sites in a 735 km river network. Universal kriging was used to predict a continuous map of densities among survey locations, and block kriging (BK) was used to summarize discrete map areas and make population estimates at stream, river, and network scales. The SSN models also accommodate covariates, which facilitates hypothesis testing and provides insights about factors affecting patterns of abundance. The SSN–BK population estimator can be applied using free software and geospatial resources to develop valuable information at low cost from many existing fisheries data sets.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3