A novel statistical approach to deal with spatial bias in maturity ogive estimation

Author:

Cousido-Rocha Marta1ORCID,Izquierdo Francisco1,Martínez-Minaya Joaquín2,Pennino M. Grazia3,Mendes Hugo4,Silva Cristina4,Silva Andreia V.4,Saínza María1,Cerviño Santiago1

Affiliation:

1. Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo. Subida a Radio Faro, 50-52, Vigo (Pontevedra) 36390, Spain

2. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia 46022, Spain

3. Instituto Español de Oceanografía (IEO-Sede Central). Sede Central C. del Corazón de María, 8, Madrid 28002, Spain

4. Instituto Português do Mar e da Atmosfera (IPMA), Av. Alfredo Magalhães Ramalho, 6, Lisboa 1495-165, Portugal

Abstract

The proportion of mature fish at length is one of the most important population attributes when evaluating reproductive potential for fish stock assessment purposes. Bias in maturity ogive parameters can lead to fishery management decisions based on misspecified biological reference points. These parameters can vary spatially and temporally, and this variability should be understood and included in the assessment models. However, integrating this variability becomes challenging when specific spatial-dependent ogives cannot be used in the stock assessment model. Hence, this study proposes a novel use of a multivariate response Bayesian regression model, employing an integrated nested Laplace approximation to estimate a single global maturity ogive using data from various spatial areas. This model explicitly accounts for differences in the sampling process and combines information from different areas to estimate shared maturity ogive parameters using joint-likelihood procedures. The model is applied to the European hake stock in ICES (International Council for the Exploration of the Sea) Divisions 27.8.c and 27.9.a, serving as a practical guide. In this model, we have considered different predictors to handle the relationship between the probability of being mature and the length and year covariates. Our results suggest that the logistic formulation correctly captures the relationship between the probability of being mature and length. For year variability, including a year factor covariate or year random effect in the predictor model produces similar values of goodness of fit measures.

Funder

Ministerio de Ciencia, Innovación y Universidades

Agencia Estatal de Investigación

European Union-Next Generation EU

European Union-Next Generation EU.

Generalitat Valenciana

Xunta de Galicia

Axencia Galega de Innovación

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3