Estimating observer error and steelhead redd abundance using a modified Gaussian area-under-the-curve framework

Author:

Murdoch Andrew R.1,Herring Chad J.1,Frady Charles H.1,See Kevin2,Jordan Chris E.3

Affiliation:

1. Washington Department of Fish and Wildlife, 600 Capitol Way North, Olympia, WA 98501, USA.

2. Quantitative Consultants Inc., 2725 Montlake Blvd. East, Seattle, WA 98112, USA.

3. Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, 2725 Montlake Blvd. East., Seattle, WA 98112, USA.

Abstract

This study examined how a suite of habitat and environmental variables relate to the ability of a stream surveyor to identify (observer efficiency) and distinguish (observer accuracy) steelhead (Oncorhynchus mykiss) redds from other stream features. Two existing spawning survey protocols that included one or two redd observers were used to develop models to estimate redd observer error. In most cases, steelhead redd abundances using raw redd counts were underestimated. Mean annual rates of observer efficiency ranged from 0.44 to 0.57, and observer accuracy ranged from 0.67 to 0.83. Regardless of the observer error model used, adjusted annual redd abundance estimates were generally unbiased (range 1.6–0.6 redds). A Gaussian area-under-the-curve methodology that incorporates redd count data and observer error rates was used to generate unbiased estimates of steelhead redd abundance in the Wenatchee (170 redds, coefficient of variation (CV) = 44%) and Methow (106 redds, CV = 41%) rivers. Unbiased estimates of redd abundance will help inform new population viability analyses to better prioritize those populations with the greatest conservation need.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference30 articles.

1. A new look at the statistical model identification

2. Measuring the reach-scale geomorphic diversity of streams: application to a stream disturbed by a sediment slug

3. Boydstun, L.B., and McDonald, T. 2005. Action plan for monitoring California’s coastal salmonids. Final report to NOAA Fisheries, Contract Number WASC-3-1295, Santa Cruz, California.

4. Burnham, K.P., and Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York.

5. Evaluating the Accuracy and Precision of Multiple Abundance Estimators Using State-Space Models: A Case Study for a Threatened Population of Chinook Salmon in Johnson Creek, Idaho

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3