Improved understanding and prediction of freshwater fish communities through the use of joint species distribution models

Author:

Wagner Tyler1,Hansen Gretchen J.A.2,Schliep Erin M.3,Bethke Bethany J.4,Honsey Andrew E.2,Jacobson Peter C.4,Kline Benjamen C.5,White Shannon L.5

Affiliation:

1. US Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, USA.

2. Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55188, USA.

3. Department of Statistics, University of Missouri, 146 Middlebush Hall, Columbia, MO 65211, USA.

4. Minnesota Department of Natural Resources, Division of Fish and Wildlife, St. Paul, MN 55155, USA.

5. Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, USA.

Abstract

Two primary goals in fisheries research are to (i) understand how habitat and environmental conditions influence the distribution of fishes across the landscape and (ii) make predictions about how fish communities will respond to environmental and anthropogenic change. In inland, freshwater ecosystems, quantitative approaches traditionally used to accomplish these goals largely ignore the effects of species interactions (competition, predation, mutualism) on shaping community structure, potentially leading to erroneous conclusions regarding habitat associations and unrealistic predictions about species distributions. Using two contrasting case studies, we highlight how joint species distribution models (JSDMs) can address the aforementioned deficiencies by simultaneously quantifying the effects of abiotic habitat variables and species dependencies. In particular, we show that conditional predictions of species occurrence from JSDMs can better predict species presence or absence compared with predictions that ignore species dependencies. JSDMs also allow for the estimation of site-specific probabilities of species co-occurrence, which can be informative for generating hypotheses about species interactions. JSDMs provide a flexible framework that can be used to address a variety of questions in fisheries science and management.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3