A new look at the Lake Superior biomass size spectrum

Author:

Yurista Peder M.1,Yule Daniel L.2,Balge Matt3,VanAlstine Jon D.1,Thompson Jo A.1,Gamble Allison E.3,Hrabik Tom R.3,Kelly John R.1,Stockwell Jason D.2,Vinson Mark R.2

Affiliation:

1. Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN 55804-2595, USA.

2. US Geological Survey Great Lakes Science Center, Lake Superior Biological Station, 2800 Lake Shore Drive East, Ashland, WI 54806-2427, USA.

3. Biology Department, University of Minnesota Duluth, 207 Swenson Science Bldg., 1035 Kirby Drive, Duluth, MN 55812-3004, USA.

Abstract

We synthesized data from multiple sampling programs and years to describe the Lake Superior pelagic biomass size structure. Data consisted of Coulter counts for phytoplankton, optical plankton counts for zooplankton, and acoustic surveys for pelagic prey fish. The size spectrum was stable across two time periods separated by 5 years. The primary scaling or overall slope of the normalized biomass size spectra for the combined years was −1.113, consistent with a previous estimate for Lake Superior (−1.10). Periodic dome structures within the overall biomass size structure were fit to polynomial regressions based on the observed sub-domes within the classical taxonomic positions (algae, zooplankton, and fish). This interpretation of periodic dome delineation was aligned more closely with predator–prey size relationships that exist within the zooplankton (herbivorous, predacious) and fish (planktivorous, piscivorous) taxonomic positions. Domes were spaced approximately every 3.78 log10 units along the axis and with a decreasing peak magnitude of −4.1 log10 units. The relative position of the algal and herbivorous zooplankton domes predicted well the subsequent biomass domes for larger predatory zooplankton and planktivorous prey fish.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3