Curvature tensors of higher-spin gauge theories derived from general Lagrangian densities

Author:

Baker Mark Robert12,Bruce-Robertson Julia12

Affiliation:

1. Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada.

2. The Rotman Institute of Philosophy, Western University, ON N6A 5B7, Canada.

Abstract

Curvature tensors of higher-spin gauge theories have been known for some time. In the past, they were postulated using a generalization of the symmetry properties of the Riemann tensor (curl on each index of a totally symmetric rank-n field for each spin-n). For this reason they are sometimes referred to as the generalized “Riemann” tensors. In this article, a method for deriving these curvature tensors from first principles is presented; the derivation is completed without any a priori knowledge of the existence of the Riemann tensors or the curvature tensors of higher-spin gauge theories. To perform this derivation, a recently developed procedure for deriving exactly gauge invariant Lagrangian densities from quadratic combinations of N order of derivatives and M rank of tensor potential is applied to the N = M = n case under the spin-n gauge transformations. This procedure uniquely yields the Lagrangian for classical electrodynamics in the N = M = 1 case and the Lagrangian for higher derivative gravity (“Riemann” and “Ricci” squared terms) in the N = M = 2 case. It is proven here by direct calculation for the N = M = 3 case that the unique solution to this procedure is the spin-3 curvature tensor and its contractions. The spin-4 curvature tensor is also uniquely derived for the N = M = 4 case. In other words, it is proven here that, for the most general linear combination of scalars built from N derivatives and M rank of tensor potential, up to N = M = 4, there exists a unique solution to the resulting system of linear equations as the contracted spin-n curvature tensors. Conjectures regarding the solutions to the higher spin-n N = M = n are discussed.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3