Do we need delocalised wavefunctions for the excited state dynamics of 1,1-difluoroethylene?

Author:

Gómez Sandra12ORCID,Singer Nadja K.2,González Leticia2,Worth Graham A.1ORCID

Affiliation:

1. Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

2. Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria

Abstract

In this work, we set up a model Hamiltonian to study the excited state quantum dynamics of 1,1-difluoroethylene, a molecule that has equivalent atoms exchanged by a torsional symmetry operation leading to equivalent minima on the potential energy surface. In systems with many degrees of freedom where the minimum energy geometry is not unique, the ground state wavefunction will be delocalised among multiple minima. In this small test system, we probe the excited state dynamics considering localised (in a single minimum) and delocalised (spread over among multiple minima) wavefunctions and check whether this choice would influence the final outcome of the quantum dynamics calculations. Our molecular Hamiltonian comprises seven electronic states, including valence and Rydberg states, computed with the MS-CASPT2 method and projected onto the vibrational coordinates of the twelve normal modes of 1,1-difluoroethylene in its vibrational ground state. This Hamiltonian has been symmetrised along the torsional degree of freedom to make both minima completely equivalent and the model is supported by the excellent agreement with the experimental absorption spectrum. Quantum dynamics results show that the different initial conditions studied do not appreciably affect the excited state populations or the absorption spectrum when the dynamics is simulated assuming a delta pulse excitation.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3