Affiliation:
1. Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary
2. János Szentágothai Research Center, Ifjúság Street 20, H-7624 Pécs, Hungary
Abstract
In this work, the effects of the scan rate and the concentration of the substituted phenols on the peak currents or current plateaus have been investigated. Voltammetric curves recorded by a platinum microelectrode varied significantly under different experimental conditions in cases of 4-chlorophenol, 4- tert-butylphenol, and 4-nitrophenol. In the case of 4-methoxyphenol and 4- tert-butylphenol, when the experiments were performed in the lower concentration range in acetonitrile, the plateau current and peak current showed linear dependence on phenol concentration. Therefore, these ranges offer opportunity for further characterization. The electrode reaction of 4-methoxyphenol was found to be a diffusion-controlled process in the solvents applied (water, acetonitrile, dimethyl sulfoxide, dimethyl formamide, nitrobenzene, acetone, dichloromethane, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol). Diffusion coefficients of 4-methoxyphenol were determined with a microelectrode using the steady-state voltammograms. Diffusion coefficients of other phenols were measured only in acetonitrile with a macroelectrode. In agreement with known theories, the diffusion coefficients showed inversely proportional relationships with the solvent viscosities. Special care was needed in 1-pentanol solvent since the increasing anodic peaks appeared after the first scan and overlaid with the sigmoidal-shaped regular microelectrode voltammograms. This observation is probably due to formation of adhering residual electroactive products.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis