A duplex real-time NASBA assay targeting a serotype-specific gene for rapid detection of viable Salmonella Paratyphi C in retail foods of animal origin

Author:

Zhai Ligong12,Liu Hongxia1,Li Junjie1,Lu Zhaoxin1,Bie Xiaomei1

Affiliation:

1. College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing 210095, People’s Republic of China.

2. Food Engineering College, Anhui Science and Technology University, Fengyang 233100, People’s Republic of China.

Abstract

Salmonella enterica serovar Paratyphi C is highly adapted to humans and can cause a typhoid-like disease with high mortality rates. In this study, three serovar-specific genes were identified by comparative genomics for Salmonella Paratyphi C, SPC_0871, SPC_0872, and SPC_0908. Based on the SPC_0908 and xcd genes for testing Salmonella spp., we developed a duplex real-time nucleic acid sequence-based amplification (real-time NASBA) with a molecular beacon approach for the simultaneous detection of viable cells of Salmonella spp. and serotype Paratyphi C. The test selectively and consistently detected 53 Salmonella spp. (representing 31 serotypes) and 18 non-Salmonella strains. Additionally, the method showed high resistance to interference from natural background flora in pork and chicken samples. The sensitivity of the established approach was determined to be 4.89 cfu/25 g in artificially contaminated pork and chicken samples after pre-enrichment. We propose this NASBA-based protocol as a potential detection method for Salmonella spp. and serotype Paratyphi C in foods of animal origin.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3