Unraveling aerobic cultivable cellulolytic microorganisms within the gastrointestinal tract of sheep (Ovis aries) and their evaluation for cellulose biodegradation

Author:

Yang Jie12,Zhao Jie1,Wang Bobo1,Yu Zhisheng13

Affiliation:

1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

2. Forest & Nature Lab, Department of Environment, Faculty of Biosciences Engineering, Ghent University, Gontrode-Melle, Belgium.

3. RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, P.R. China.

Abstract

Anaerobic cellulolytic microbes in the gastrointestinal tract (GT) of ruminants have been well-documented; however, knowledge of aerobic microbes with cellulolytic activities in the ruminant GT is comparably limited. Here, we unraveled aerobic cultivable cellulolytic microbes in the GT of Ujimqin sheep (Ovis aries) and evaluated the cellulolytic potential of the promising isolates. Twenty-two strains were found to possess cellulose-degrading potential by Congo-red staining and phylogenetic analysis of the 16S rDNA/ITS sequence revealed that all strains belonged to nine genera, i.e., Bacillus, Streptomyces, Pseudomonas, Lactobacillus, Brachybacterium, Sanguibacter, Rhizobium, Fusarium, and Aspergillus. Strains with high cellulolytic activity were selected to further evaluate the activities of various enzymes in lignocellulosic alfalfa hay (Medicago sativa). Among them, isolate Bacillus subtilis RE2510 showed the highest potential for cellulose degradation, considering the high endoglucanase (0.1478 ± 0.0014 IU mL−1), exoglucanase (0.1735 ± 0.0012 IU mL−1), and β-glucosidase (0.3817 ± 0.0031 IU mL−1) after 10-day incubation with alfalfa hay. A significant destruction effect of the cellulose structure and the attachment of B. subtilis RE2510 to the hay were also revealed using a scanning electron microscope. This study expands our knowledge of aerobic cellulolytic isolates from the GT of sheep and highlights their potential application as a microbial additive in the aerobic process of cellulose bioconversion.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3