Author:
Dekleva Michael L.,Strohl William R.
Abstract
The catabolism of glucose by Streptomyces C5, a producer of anthracycline antibiotics, was investigated to determine the pathways that supply precursors for anthracycline biosynthesis. Carbons for the biosynthesis of ε-rhodomycinone, an anthracycline aglycone, from radiolabelled glucose were derived primarily from the Embden–Meyerhof–Parnas pathway, with a minor contribution from the pentose phosphate pathway. Furthermore, the anthracycline-producing strain, Streptomyces C5, as well as Streptomyces aureofaciens and Streptomyces lividans, strains that produce nonanthracycline polyketide antibiotics, displayed enzyme activities indicative of the Embden–Meyerhof–Parnas and pentose phosphate glycolytic pathways. As determined from labelling patterns, Streptomyces C5 apparently has a complete tricarboxylic acid cycle, but does not have a glyoxylate bypass pathway.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献