Population-based resequencing analysis of wild and cultivated barley revealed weak domestication signal of selection and bottleneck in theRrs2scald resistance gene region

Author:

Fu Yong-Bi1

Affiliation:

1. Plant Gene Resources of Canada, Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.

Abstract

Many plant disease resistance (R) genes have been cloned, but the potential of utilizing these plant R-gene genomic resources for genetic inferences of plant domestication history remains unexplored. A population-based resequencing analysis of the genomic region near the Rrs2 scald resistance gene was made in 51 accessions of wild and cultivated barley from 41 countries. Fifteen primer pairs were designed to sample the genomic region with a total length of 10 406 bp. More nucleotide diversity was found in wild (π = 0.01846) than cultivated (π = 0.01507) barley samples. Three distinct groups of 29 haplotypes were detected for all 51 samples, and they were well mixed with wild and cultivated barley samples from different countries and regions. The neutrality tests by Tajima’s D were not significant, but a significant (P < 0.05) case by Fu and Li’s D* and F* was found in the barley cultivar samples. The estimate of selection intensity by Ka/Kswas 0.691 in wild barley and 0.580 in cultivated barley. The estimate of the minimum recombination events was 16 in wild barley and 19 in cultivated barley. A coalescence simulation revealed a bottleneck intensity of 1.5 to 2 since barley domestication. Together, the domestication signal in the genomic region was weak both in human selection and domestication bottleneck.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3