Neuronal signaling in schistosomes: current status and prospects for postgenomicsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board.

Author:

Ribeiro Paula1,Geary Timothy G.1

Affiliation:

1. Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada.

Abstract

Parasitic platyhelminths of the genus Schistosoma Weinland, 1858 (Trematoda, Digenea) are the etiological agents of human schistosomiasis, one of the most prevalent and debilitating parasitic diseases worldwide. Praziquantel is the only drug treatment available in most parts of the world and the effectiveness of the drug is threatened by the prospect of drug resistance. There is a pressing need to learn more about the basic biology of this organism and to identify molecular targets for new therapeutic drugs. The nervous system of schistosomes coordinates many activities that are essential for parasite survival, and as such is an attractive target for chemotherapeutic intervention. Until recently, very little was known about the molecular mechanisms of neuronal signaling in these organisms, but this is rapidly changing following the completion of the genome sequence and several recent developments in schistosome transgenesis and gene silencing. Here we review the current status of schistosome neurobiology and discuss prospects for future research as the field moves into a postgenomics era. One of the themes that will emerge from this discussion is that schistosomes have a rich diversity of neurotransmitters and receptors, indicating a more sophisticated system of neuronal communication than might be expected of a parasitic flatworm. Moreover, many of these transmitter receptors share little sequence homology with those of the human host, making them ideally suited for selective drug targeting. Strategies for characterization of these important parasite proteins will be discussed.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3