Fractal fits to Riemann zeros

Author:

Slater P B

Abstract

Wu and Sprung (Phys. Rev. E, 48, 2595 (1993)) reproduced the first 500 nontrivial Riemann zeros, using a one-dimensional local potential model. They concluded — as did van Zyl and Hutchinson (Phys. Rev. E, 67, 066211 (2003)) — that the potential possesses a fractal structure of dimension d = 3/2. We model the nonsmooth fluctuating part of the potential by the alternating-sign sine series fractal of Berry and Lewis A(x,γ). Setting d = 3/2, we estimate the frequency parameter (γ), plus an overall scaling parameter (σ) that we introduce. We search for that pair of parameters (γ,σ) that minimizes the least-squares fit Sn(γ,σ) of the lowest n eigenvalues — obtained by solving the one-dimensional stationary (nonfractal) Schrodinger equation with the trial potential (smooth plus nonsmooth parts) — to the lowest n Riemann zeros for n = 25. For the additional cases, we study, n = 50 and 75, we simply set σ = 1. The fits obtained are compared to those found by using just the smooth part of the Wu–Sprung potential without any fractal supplementation. Some limited improvement — 5.7261 versus 6.392 07 (n = 25), 11.2672 versus 11.7002 (n = 50), and 16.3119 versus 16.6809 (n = 75) — is found in our (nonoptimized, computationally bound) search procedures. The improvements are relatively strong in the vicinities of γ = 3 and (its square) 9. Further, we extend the Wu-Sprung semiclassical framework to include higher order corrections from the Riemann–von Mangoldt formula (beyond the leading, dominant term) into the smooth potential. PACS Nos.: 02.10.De, 03.65.Sq, 05.45.Df, 05.45.Mt

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Riemann Hypothesis, complex scalings and logarithmic time reversal;Journal of Geometry and Physics;2018-07

2. The search for a Hamiltonian whose energy spectrum coincides with the Riemann zeta zeroes;International Journal of Geometric Methods in Modern Physics;2017-05-04

3. ON THE RIEMANN HYPOTHESIS, AREA QUANTIZATION, DIRAC OPERATORS, MODULARITY, AND RENORMALIZATION GROUP;International Journal of Geometric Methods in Modern Physics;2010-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3