The importance of glyoxylate and other glycine precursors in the hepatic and renal conjugation of benzoate in normal and hyperammonemic mice

Author:

Qureshi Ijaz A.,Clermont Paule,Letarte Jacques

Abstract

Benzoate conjugation, represented by hippurate synthesis, was measured in hepatocytes isolated from normal and sparse-fur (spf) mutant mice, with X-linked ornithine transcarbamylase deficiency, to compare the effects of glyoxylate and piridoxylate (a hemiacetal of glyoxylate and pyridoxine), substituted for glycine. Various amino acid precursors of glycine described in the literature, including serine, threonine, glutamine, and glutamate, were studied in a similar manner. The role of glyoxylate and piridoxylate was also assessed in the renal cortex, in comparison with liver homogenates from normal and hyperammonemic mice. The results indicate the importance of glyoxylate and piridoxylate to completely substitute for glycine (96–115%) in isolated hepatocytes of spf/Y mice, as compared with 53–69% (p < 0.05) in normal +/Y controls. The mean value of amino acid precursors to substitute for glycine in spf mice was serine 51%, threonine 29% (p < 0.05), and glutamine 9%. In normal mice, only serine (21%) (p < 0.01) partly substituted for glycine, whereas threonine, glutamine and glutamate gave negative values of net hippurate synthesis. The specific activity of renal cortex for hippurate synthesis from glycine, glyoxylate and piridoxylate was 3–4 times that of liver homogenates (p < 0.01 – < 0.001). A scheme for the transamination of glyoxylate by alanine is presented. Besides alanine, the excess of glycine, serine, and threonine is readily deaminated in the body to take part in gluconeogenic reactions, thus contributing to hyperammonemia. The cumulative effect of benzoate conjugation to drain these ammoniagenic precursors through glycine may be the basis of its therapeutic effect in hyperammonemia.Key words: glycine, glyoxylate, sodium benzoate, hippurate synthesis, spf mice, hepatocytes.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3